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The bed configuration of straight sand-bed channels 
when flow is nearly critical 
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The diagonal pattern of bed form which appears in sand-bed channels when the 
channel width to depth ratio is great and the flow is nearly critical is discussed 
from the theoretical viewpoint by using the method of characteristics. Some 
photographs illustrate the phenomenon. 

1. Introduction 
The diagonal sand waves occur in straight sand-bed channels with smooth 

walls, when the flow is nearly critical (or the Froude number is near unity) with 
a certain depth to width ratio. This phenomenon has been observed previously 
by Vanoni & Brooks (1957), Shen (1961) and Guy, Simons & Richardson (1966) 
in their studies of resistance to flow and bed-material discharge in an 8 foot wide 
flume at  Colorado State University during the period 1956-1958. According to 
Shen, this kind of diagonal pattern is probably due to water-surface fluctuations. 

From further observations by the authors, the diagonal sand waves on a sand 
bed are associated with the water-surface undulation which is a type of disturb- 
ance that occurs when flow changes from supercritical to subcritical or vice versa. 
Flow bounded within the diagonal disturbances is essentially continuous, 
whereas a discontinuity exists for flow across the disturbances, see figure 1. The 
discontinuity in a flow field is usually determined by the method of characteristics 
which is used most often for problems inthe field of gas dynamics (Owczarek 1964). 

2. Theoretical considerations 
In  a straight alluvial channel with a large width/depth ratio, the vertical 

motion is neglected and the equations of motion in the longitudinal and transverse 

(1) 
directions are 

where U and W are average velocities per unit width in the longitudinal and 
transverse directions, Sis the channel slope, h the local depth of flow, andr,, = yhS 
(shear stress at  channel bottom). 
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(3) 

The continuity equation for water discharge is 
a a ah 

- (Uh)+&(Wh)  = --- at . 
ax 

84.1 aq3 ah0 -+- = - ( I -h)-  
ax az at 

The continuity for sediment transport requires 

where q1 and q3 are the discharges of sands per unit width in the longitudinal and 
transverse directions, h is the porosity of sands, and ho is the channel-bed eleva- 
tion. 

Disturbances across which 
flow is discontinuous 

Regions within which 
flow is continuous 

Disturbance - 
Section A-A 

FIGURE 1. Schematic drawing showing diagonal lines in shallow channel flow with Froude 
number near unity. 

The discharge of sands in a sand-bed channel depends on many variables. 
Colby (1964) has found that in streams where differences in depth, water tempera- 
ture, and size of bed sand are not excessively large, the discharge of sands per 
unit width is proportional to the average velocity. If we assume that the dis- 
charges of sands are proportional to the velocity components, i.e. 

U P  = q1Iq33 

(4) at 
then 
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The movement of diagonal sand waves has been observed to be very slow, 
hence the unsteady terms in the above equations can be neglected. The above four 
equations, together with the equations for total differentials can be written as 

au au 
ax a Z  

u-+ w- = F,(h,x), 

au au 
ax-+az- ax az = d U ,  

aw aw 
dx-+dz- ax az = dW, 

(9) 

This system of simultaneous equations for the partial derivatives aU/ax, 
aU/dz ,  awlax, awl&, ahlax, ahlax, aq,/ax and 8q1/az has independent variables 
x and z, and dependent variables U ,  W ,  h and ql.  The coefficients of the partial 
derivatives in (5) to (8) are functions of dependent variables only. This system of 
equations is called quasi-linear because each equation is linear with respect to the 
derivatives of the highest (in this case, first) order. Therefore, these equations 
can be analyzed by the method of characteristics. 

Using Cramer’s rule, the derivative aU/ax can be determined from the quotient 
of two determinants 

a u p x  = k , p ,  

where k, = 

F , W O O g O O O  
F 2 0 U W O g 0 0  
0 O O h U W O  0 

d U d Z O  0 0 0 0  0 
d W O d z d z O O O  0 
dh 0 0 0 d x d z O  0 

dg, 0 0 0 0 0 ax dz 
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and N =  

u w o o g o o o  
0 o u w o g o  0 
h O O h U W O  0 

d x d z O O O O O  0 
0 O d x d z O O O  0 
0 0 0 0 d x d z  0 0 
0 0 0 0 O O d x d z  

Similarly, other derivatives are 

where k,, k,, . . . , k, are appropriate determinants. 
The necessary condition for the partial derivatives to be indeterminate, or 

there would be a discontinuity in the flow field, is that the determinant N = 0. 
The directions in the ( x , z )  plane in which the determinant N = 0 are called 
characteristic directions and curves along which N = 0 are called characteristic 
curves. If the flow under consideration permits the existence of discontinuities 
in the form of water surface undulations, their paths can only be represented by 
the characteristic curves. Hence, the characteristic curves may represent the 
diagonal paths of disturbances. 

Letting N = 0, we obtain 

( W d x -  Udz)2[(Ia7dx- Ud~)~-gh(dx) ’]  = 0. (13) 

The four roots of the above equation are 

dx tJ dx U dx 
d z  W ’  d z - w ’  d z - W m )  dz  W - J(yh) ’ 

They are independent of the sediment discharge. The first two roots are stream 
lines, and the characteristic direction represented by the last two roots is of 
principal interest to us. These roots can be written as 

ax U 
and - = 

U 
- - - - .- - 

In this equation, if we assume that W is small and hence negligible, then 

dxldz = U/d(gh).  (15) 

(16) 

Since water surface undulations occur when the flow is nearly critical, or 
U = J(gh), then dxldz & 1.  

Equation (16) indicates that the disturbances occur on lines approximately 
45” from the flow direction. Thus, we have verified that the sand-wave patterns 
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associated with the accompanying water surface undulations are diagonal. 
Figure 2, plates 1 and 2, shows the diagonal bed form of channel flows when the 
water had been shut off, as observed by Guy, Simons & Richardson in an 8 foot 
wide laboratory flume. The Froude numbers (q = U/J(gh)) and width to depth 
ratios for all runs are also listed. 

3. Conclusions 
The diagonal bed form usually occurs in alluvial channels with a large width to 

depth ratio and with the flow nearly critical (or the Froude number near unity). 
The diagonal bed form is associated with the water-surface undulation which is a 
disturbance across which the flow changes from supercritical to subcritical or 
vice versa. It has been verified in this paper that the disturbance or the sand 
wave occurs on lines approximately 45" from the flow direction. 
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FIGURE 2(a), (5 ) .  For legend see plate 2. 

Plate 1 

(Facing p .  496) 
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FIGURE 2. Diagonal bed patterns in a laboratory flume witzh large width t,o depth ratios 
and with the flow nearly critical. (a) Froude number = 0.92, width to depth ratio = 24. 
( b )  Froude nnmbor = 0.83, width to depth ratio = 28.5. (c) Froude number = 1.12, 
width t o  depth ratio = 18. 


